dc.contributorUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-05-01T08:45:05Z
dc.date.accessioned2022-12-20T03:41:07Z
dc.date.available2022-05-01T08:45:05Z
dc.date.available2022-12-20T03:41:07Z
dc.date.created2022-05-01T08:45:05Z
dc.date.issued2021-01-01
dc.identifierNonlinear Physical Science, p. 93-114.
dc.identifier1867-8459
dc.identifier1867-8440
dc.identifierhttp://hdl.handle.net/11449/233485
dc.identifier10.1007/978-981-16-3544-1_7
dc.identifier2-s2.0-85114312280
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5413584
dc.description.abstractWe discuss in this chapter some dynamical properties for the Fermi-Ulam model under different dissipative forces. The first type considered is through inelastic collisions that is when the particle has a fractional loss of energy upon collision. We will show that depending on the control parameters, stable and unstable manifolds obtained from the same saddle fixed point cross each other producing a crisis event. Such a crisis destroys the chaotic attractor which is replaced by a chaotic transient. Another type of dissipative force is when the particle crosses a viscous media hence losing energy along its trajectory. Three different types of drag forces will be considered: (i) proportional to the velocity of the particle; (2) proportional to square of the velocity and; (3) proportional to a power of the velocity different from the linear and from the quadratic.
dc.languageeng
dc.relationNonlinear Physical Science
dc.sourceScopus
dc.titleDissipation in the Fermi-Ulam Model
dc.typeCapítulos de libros


Este ítem pertenece a la siguiente institución