dc.contributorSan Diego State University
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.contributorUniversidade Federal do Ceara
dc.date.accessioned2022-05-01T08:44:37Z
dc.date.accessioned2022-12-20T03:40:23Z
dc.date.available2022-05-01T08:44:37Z
dc.date.available2022-12-20T03:40:23Z
dc.date.created2022-05-01T08:44:37Z
dc.date.issued2021-06-01
dc.identifierRocky Mountain Journal of Mathematics, v. 51, n. 3, p. 903-920, 2021.
dc.identifier1945-3795
dc.identifier0035-7596
dc.identifierhttp://hdl.handle.net/11449/233424
dc.identifier10.1216/rmj.2021.51.903
dc.identifier2-s2.0-85113191469
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5413523
dc.description.abstractA construction of laminated lattices of full diversity in odd dimensions d with 3 ≤ d ≤ 15 is presented. The technique, which uses a combination of number fields and error-correcting codes, consists essentially of two steps: In the first, the Abelian number field F of degree d and prime conductor p, where p is a prime congruent to 1 modulo d, is considered. In the second, the lattice is obtained as the canonical embedding (Minkowski homomorphism) of a Z-submodule of OF, the ring of integers of F. The submodule is defined by the parity-check matrices of a Reed–Solomon code over GF(p) and a suitably chosen linear code, typically either binary or over Z/4Z, the ring of integers modulo 4.
dc.languageeng
dc.relationRocky Mountain Journal of Mathematics
dc.sourceScopus
dc.subjectAbelian extensions
dc.subjectCyclotomic fields
dc.subjectError-correcting codes
dc.subjectLattice packing
dc.subjectQuadratic forms
dc.titleLattices from abelian extensions and error-correcting codes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución