dc.contributorIstituto Nazionale di Fisica Nucleare
dc.contributorUniversità Napoli
dc.contributorInstituto de Física Teórica
dc.date.accessioned2022-04-29T08:43:47Z
dc.date.accessioned2022-12-20T03:12:21Z
dc.date.available2022-04-29T08:43:47Z
dc.date.available2022-12-20T03:12:21Z
dc.date.created2022-04-29T08:43:47Z
dc.date.issued1970-01-01
dc.identifierIl Nuovo Cimento A, v. 70, n. 2, p. 233-246, 1970.
dc.identifier1826-9869
dc.identifier0369-3546
dc.identifierhttp://hdl.handle.net/11449/231135
dc.identifier10.1007/BF02758981
dc.identifier2-s2.0-51249190515
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5411269
dc.description.abstractBoth the «direct» and the «inverse» Noether's theorems are generalized to allow for infinitesimal transformations that add to the action functional an integral over a 4-divergence and an integral over a function vanishing «on the orbit» (Noether transformations). It is then shown that: i) to every Noether transformation there corresponds a «weak» continuity equation and a family of Nother transformations (Noether family) defining the same continuity equation; ii) every Noether family contains an invariance transformation; iii) to every «weak» continuity equation there corresponds a Noether family; iv) every Noether family contains a subset of Noether transformations equivalent to a 4-divergence translation of the Lagrangian density. © 1970, Società Italiana di Fisica. All rights reserved.
dc.languageeng
dc.relationIl Nuovo Cimento A
dc.sourceScopus
dc.titleOn the inversion of Noether's theorem in the Lagrangian formalism: II.—Classical field theory
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución