dc.contributor | Istituto Nazionale di Fisica Nucleare | |
dc.contributor | Università Napoli | |
dc.contributor | Instituto de Física Teórica | |
dc.date.accessioned | 2022-04-29T08:43:47Z | |
dc.date.accessioned | 2022-12-20T03:12:21Z | |
dc.date.available | 2022-04-29T08:43:47Z | |
dc.date.available | 2022-12-20T03:12:21Z | |
dc.date.created | 2022-04-29T08:43:47Z | |
dc.date.issued | 1970-01-01 | |
dc.identifier | Il Nuovo Cimento A, v. 70, n. 2, p. 233-246, 1970. | |
dc.identifier | 1826-9869 | |
dc.identifier | 0369-3546 | |
dc.identifier | http://hdl.handle.net/11449/231135 | |
dc.identifier | 10.1007/BF02758981 | |
dc.identifier | 2-s2.0-51249190515 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/5411269 | |
dc.description.abstract | Both the «direct» and the «inverse» Noether's theorems are generalized to allow for infinitesimal transformations that add to the action functional an integral over a 4-divergence and an integral over a function vanishing «on the orbit» (Noether transformations). It is then shown that: i) to every Noether transformation there corresponds a «weak» continuity equation and a family of Nother transformations (Noether family) defining the same continuity equation; ii) every Noether family contains an invariance transformation; iii) to every «weak» continuity equation there corresponds a Noether family; iv) every Noether family contains a subset of Noether transformations equivalent to a 4-divergence translation of the Lagrangian density. © 1970, Società Italiana di Fisica. All rights reserved. | |
dc.language | eng | |
dc.relation | Il Nuovo Cimento A | |
dc.source | Scopus | |
dc.title | On the inversion of Noether's theorem in the Lagrangian formalism: II.—Classical field theory | |
dc.type | Artículos de revistas | |