dc.contributorInstituto de Física Teórica
dc.contributorCentro Atómico
dc.contributorUFF
dc.date.accessioned2022-04-29T08:43:26Z
dc.date.accessioned2022-12-20T03:11:35Z
dc.date.available2022-04-29T08:43:26Z
dc.date.available2022-12-20T03:11:35Z
dc.date.created2022-04-29T08:43:26Z
dc.date.issued1977-01-01
dc.identifierJournal of Mathematical Physics, v. 19, n. 12, p. 2405-2409, 1977.
dc.identifier0022-2488
dc.identifierhttp://hdl.handle.net/11449/231073
dc.identifier10.1063/1.523644
dc.identifier2-s2.0-36749110668
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5411207
dc.description.abstractPrevious theorems on the convergence of the [n,n + m] punctual Padé approximants to the scattering amplitude are extended. The new proofs include the cases of nonforward and backward scattering corresponding to potentials having 1/r and 1/r2 long-range behaviors, for which the partial wave expansions are divergent and oscillatory, respectively. In this way, the ability of the approximation scheme as a summation method is established for all of the long-range potentials of interest in potential scattering. © 1978 American Institute of Physics.
dc.languageeng
dc.relationJournal of Mathematical Physics
dc.sourceScopus
dc.titlePunctual Padé approximants as a regularization procedure for divergent and oscillatory partial wave expansions of the scattering amplitude
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución