dc.contributor | Instituto de Física Teórica | |
dc.contributor | Centro Atómico | |
dc.contributor | UFF | |
dc.date.accessioned | 2022-04-29T08:43:26Z | |
dc.date.accessioned | 2022-12-20T03:11:35Z | |
dc.date.available | 2022-04-29T08:43:26Z | |
dc.date.available | 2022-12-20T03:11:35Z | |
dc.date.created | 2022-04-29T08:43:26Z | |
dc.date.issued | 1977-01-01 | |
dc.identifier | Journal of Mathematical Physics, v. 19, n. 12, p. 2405-2409, 1977. | |
dc.identifier | 0022-2488 | |
dc.identifier | http://hdl.handle.net/11449/231073 | |
dc.identifier | 10.1063/1.523644 | |
dc.identifier | 2-s2.0-36749110668 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/5411207 | |
dc.description.abstract | Previous theorems on the convergence of the [n,n + m] punctual Padé approximants to the scattering amplitude are extended. The new proofs include the cases of nonforward and backward scattering corresponding to potentials having 1/r and 1/r2 long-range behaviors, for which the partial wave expansions are divergent and oscillatory, respectively. In this way, the ability of the approximation scheme as a summation method is established for all of the long-range potentials of interest in potential scattering. © 1978 American Institute of Physics. | |
dc.language | eng | |
dc.relation | Journal of Mathematical Physics | |
dc.source | Scopus | |
dc.title | Punctual Padé approximants as a regularization procedure for divergent and oscillatory partial wave expansions of the scattering amplitude | |
dc.type | Artículos de revistas | |