dc.contributorKU Leuven Campus Kortrijk-Kulak
dc.contributorGhent University
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.contributorUniversidad del Bio-Bio
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T08:41:24Z
dc.date.accessioned2022-12-20T03:06:27Z
dc.date.available2022-04-29T08:41:24Z
dc.date.available2022-12-20T03:06:27Z
dc.date.created2022-04-29T08:41:24Z
dc.date.issued2022-12-01
dc.identifierScientific Reports, v. 12, n. 1, 2022.
dc.identifier2045-2322
dc.identifierhttp://hdl.handle.net/11449/230657
dc.identifier10.1038/s41598-022-09483-4
dc.identifier2-s2.0-85127376080
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5410791
dc.description.abstractCharge carriers in Dirac/Weyl semi-metals exhibit a relativistic-like behavior. In this work we propose a novel type of intrinsic half-integer Quantum Hall effect in 2D materials, thereby also offering a topological protection mechanism for the current. Its existence is rooted in the 2D parity anomaly, without any need for a perpendicular magnetic field. We conjecture that it may occur in disturbed honeycomb lattices where both spin degeneracy and time reversal symmetry are broken. These configurations harbor two distinct gap-opening mechanisms that, when occurring simultaneously, drive slightly different gaps in each valley, causing a net anomalous conductivity when the chemical potential is tuned to be between the distinct gaps. Some examples of promising material setups that fulfill the prerequisites of our proposal are also listed to motivate looking for the effect at the numerical and experimental level.
dc.languageeng
dc.relationScientific Reports
dc.sourceScopus
dc.titleHalf-integer anomalous currents in 2D materials from a QFT viewpoint
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución