dc.contributorUniversidade Estadual Paulista (UNESP)
dc.contributorUniversidade de São Paulo (USP)
dc.date.accessioned2022-04-29T08:37:45Z
dc.date.accessioned2022-12-20T02:59:18Z
dc.date.available2022-04-29T08:37:45Z
dc.date.available2022-12-20T02:59:18Z
dc.date.created2022-04-29T08:37:45Z
dc.date.issued2021-01-01
dc.identifierGeneralized Ordinary Differential Equations in Abstract Spaces and Applications, p. 407-428.
dc.identifierhttp://hdl.handle.net/11449/230091
dc.identifier10.1002/9781119655022.ch14
dc.identifier2-s2.0-85121509259
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5410225
dc.description.abstractThis chapter is dedicated to the study of semidynamical systems generated by generalized ordinary differential equations (ODEs). Besides the existence of a local semidynamical system, it shows the existence of an associated impulsive semidynamical system. The chapter concerns the existence of a local semidynamical system generated by the nonautonomous generalized ODE. It investigates properties of the impulsive generalized ODE associated with the initial value problem. The chapter presents a version of LaSalle’s invariance principle in the context of generalized ODEs. It provides the concept of a limit set on impulsive semidynamical systems in the frame of generalized ODEs, and also presents the concepts of minimality and recurrence.
dc.languageeng
dc.relationGeneralized Ordinary Differential Equations in Abstract Spaces and Applications
dc.sourceScopus
dc.subjectImpulsive semidynamical system
dc.subjectLasalle’s invariance principle
dc.subjectOrdinary differential equations
dc.subjectSemidynamical systems
dc.titleTopological dynamics
dc.typeCapítulos de libros


Este ítem pertenece a la siguiente institución