dc.contributorUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T08:36:48Z
dc.date.accessioned2022-12-20T02:57:37Z
dc.date.available2022-04-29T08:36:48Z
dc.date.available2022-12-20T02:57:37Z
dc.date.created2022-04-29T08:36:48Z
dc.date.issued2021-01-01
dc.identifierMaterials Research, v. 24, n. 5, 2021.
dc.identifier1980-5373
dc.identifier1516-1439
dc.identifierhttp://hdl.handle.net/11449/229954
dc.identifier10.1590/1980-5373-MR-2021-0209
dc.identifier2-s2.0-85119973342
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5410088
dc.description.abstractA tight-binding model is fitted to density-functional calculations of the electronic structure of the MoS2 monolayer. The model involves 13 atomic orbitals per unit cell: the 4d orbitals of the molybdenum atom plus the 3s and 3p orbitals of each sulfur atom. The hopping and overlap couplings of each atom with its first nearest neighbors in each crystalline sublattice are considered. Different values are allowed for the intraplane and interplane S-S hopping integrals. A closed-form expression is given for the effective-mass tensor at stationary points. The isotropy of the valence and conduction bands near the edges of the fundamental gap is proven. The role played by the orbital overlapping as well as the crystal-field splitting of the molybdenum 4d level is discussed.
dc.languageeng
dc.relationMaterials Research
dc.sourceScopus
dc.subjectDensity functional theory
dc.subjectElectronic structure
dc.subjectTight-binding model
dc.subjectTransition-metal dichalcogenide
dc.titleThirteen-band tight-binding model for the MoS2 monolayer
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución