dc.contributorUniversidad de Monterrey
dc.contributorUniversidad Carlos III de Madrid
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T08:36:23Z
dc.date.accessioned2022-12-20T02:56:53Z
dc.date.available2022-04-29T08:36:23Z
dc.date.available2022-12-20T02:56:53Z
dc.date.created2022-04-29T08:36:23Z
dc.date.issued2021-01-01
dc.identifierOperator Theory: Advances and Applications, v. 285, p. 113-142.
dc.identifier2296-4878
dc.identifier0255-0156
dc.identifierhttp://hdl.handle.net/11449/229893
dc.identifier10.1007/978-3-030-75425-9_8
dc.identifier2-s2.0-85119148227
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5410027
dc.description.abstractThis paper deals with sequences of monic polynomials { Φn(μk;z)}n≥0, k = 0, 1, orthogonal with respect to two nontrivial Borel measures μk, k = 0, 1, supported on the unit circle, satisfying (formula presented) n ≥ 3, where bn ≠ 0. We find examples of pairs of measures (μ0, μ1) for which this property holds. The analysis of polynomials orthogonal with respect to the Sobolev inner product associated with the pair of measures (μ0, μ1) is presented. Some properties concerning their connection coefficients are given.
dc.languageeng
dc.relationOperator Theory: Advances and Applications
dc.sourceScopus
dc.subjectCoherent pairs of measures of the second kind
dc.subjectHessenberg matrices
dc.subjectOrthogonal polynomials on the unit circle
dc.subjectProbability measures on the unit circle
dc.subjectSobolev inner products on the unit circle
dc.titleAn Extension of the Coherent Pair of Measures of the Second Kind on the Unit Circle
dc.typeCapítulos de libros


Este ítem pertenece a la siguiente institución