dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T08:33:34Z
dc.date.accessioned2022-12-20T02:53:25Z
dc.date.available2022-04-29T08:33:34Z
dc.date.available2022-12-20T02:53:25Z
dc.date.created2022-04-29T08:33:34Z
dc.date.issued2021-09-01
dc.identifierPhysical Review A, v. 104, n. 3, 2021.
dc.identifier2469-9934
dc.identifier2469-9926
dc.identifierhttp://hdl.handle.net/11449/229607
dc.identifier10.1103/PhysRevA.104.033318
dc.identifier2-s2.0-85115890843
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5409741
dc.description.abstractStability and the dynamical behavior of binary Bose-Einstein condensed mixtures trapped on the surface of a rigid spherical shell are investigated at the mean-field level, exploring the miscibility with and without vortex charges and considering repulsive and attractive interactions. To compute the critical points for stability, we follow the Bogoliubov-de Gennes method for the analysis of perturbed solutions, with the constraint that initially the stationary states are in a complete miscible configuration. For the perturbed equal-density mixture of a homogeneous uniform gas and when hidden vorticity is verified, with the species having opposite azimuthal circulation, we consider a small perturbation analysis for each unstable mode, providing a complete diagram with the intra- and interspecies interaction role on the stability of the miscible system. Finally, beyond small-perturbation analysis, we explore the dynamics of some repulsive and attractive interspecies states by full numerical solutions of the time-dependent Gross-Pitaevskii equation.
dc.languageeng
dc.relationPhysical Review A
dc.sourceScopus
dc.titleStability of a Bose-condensed mixture on a bubble trap
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución