| dc.contributor | Universitat Autònoma de Barcelona | |
| dc.contributor | Universidade Estadual Paulista (UNESP) | |
| dc.contributor | IFSULDEMINAS | |
| dc.date.accessioned | 2022-04-29T08:33:15Z | |
| dc.date.accessioned | 2022-12-20T02:52:55Z | |
| dc.date.available | 2022-04-29T08:33:15Z | |
| dc.date.available | 2022-12-20T02:52:55Z | |
| dc.date.created | 2022-04-29T08:33:15Z | |
| dc.date.issued | 2021-01-01 | |
| dc.identifier | Anais da Academia Brasileira de Ciencias, v. 93, n. 4, 2021. | |
| dc.identifier | 1678-2690 | |
| dc.identifier | 0001-3765 | |
| dc.identifier | http://hdl.handle.net/11449/229568 | |
| dc.identifier | 10.1590/0001-3765202120191139 | |
| dc.identifier | 2-s2.0-85115401790 | |
| dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/5409702 | |
| dc.description.abstract | Poincaré in 1891 asked about the necessary and sufficient conditions in order to characterize when a polynomial differential system in the plane has a rational first integral. Here we solve this question for the class of Liénard differential equations ẍ + f (x)ẋ + x = 0, being f (x) a polynomial of arbitrary degree. As far as we know it is the first time that all rational first integrals of a relevant class of polynomial differential equations of arbitrary degree has been classified. | |
| dc.language | eng | |
| dc.relation | Anais da Academia Brasileira de Ciencias | |
| dc.source | Scopus | |
| dc.subject | Liénard equation | |
| dc.subject | Poincaré problem | |
| dc.subject | Polinomial differential equation | |
| dc.subject | Rational first integral | |
| dc.title | Rational first integrals of the liénard equations: The solution to the poincaré problem for the liénard equations | |
| dc.type | Artículos de revistas | |