dc.contributorUniversitat Autònoma de Barcelona
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.contributorIFSULDEMINAS
dc.date.accessioned2022-04-29T08:33:15Z
dc.date.accessioned2022-12-20T02:52:55Z
dc.date.available2022-04-29T08:33:15Z
dc.date.available2022-12-20T02:52:55Z
dc.date.created2022-04-29T08:33:15Z
dc.date.issued2021-01-01
dc.identifierAnais da Academia Brasileira de Ciencias, v. 93, n. 4, 2021.
dc.identifier1678-2690
dc.identifier0001-3765
dc.identifierhttp://hdl.handle.net/11449/229568
dc.identifier10.1590/0001-3765202120191139
dc.identifier2-s2.0-85115401790
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5409702
dc.description.abstractPoincaré in 1891 asked about the necessary and sufficient conditions in order to characterize when a polynomial differential system in the plane has a rational first integral. Here we solve this question for the class of Liénard differential equations ẍ + f (x)ẋ + x = 0, being f (x) a polynomial of arbitrary degree. As far as we know it is the first time that all rational first integrals of a relevant class of polynomial differential equations of arbitrary degree has been classified.
dc.languageeng
dc.relationAnais da Academia Brasileira de Ciencias
dc.sourceScopus
dc.subjectLiénard equation
dc.subjectPoincaré problem
dc.subjectPolinomial differential equation
dc.subjectRational first integral
dc.titleRational first integrals of the liénard equations: The solution to the poincaré problem for the liénard equations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución