dc.contributorCarrera de Matemática
dc.contributorSystec
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T08:30:44Z
dc.date.accessioned2022-12-20T02:47:49Z
dc.date.available2022-04-29T08:30:44Z
dc.date.available2022-12-20T02:47:49Z
dc.date.created2022-04-29T08:30:44Z
dc.date.issued2021-01-01
dc.identifierESAIM - Control, Optimisation and Calculus of Variations, v. 27.
dc.identifier1262-3377
dc.identifier1292-8119
dc.identifierhttp://hdl.handle.net/11449/229152
dc.identifier10.1051/cocv/2021069
dc.identifier2-s2.0-85110408708
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5409286
dc.description.abstractA weak maximal principle for minimax optimal control problems with mixed state-control equality and inequality constraints is provided. In the formulation of the minimax control problem we allow for parameter uncertainties in all functions involved: in the cost function, in the dynamical control system and in the equality and inequality constraints. Then a new constraint qualification of Mangassarian-Fromovitz type is introduced which allowed us to prove the necessary conditions of optimality. We also derived the optimality conditions under a full rank conditions type and showed that it is, as usual, a particular case of the Mangassarian-Fromovitz type condition case. Illustrative examples are presented.
dc.languageeng
dc.relationESAIM - Control, Optimisation and Calculus of Variations
dc.sourceScopus
dc.subjectMaximum principle
dc.subjectMinimax optimal control problems
dc.subjectMixed constrained
dc.subjectNonsmooth analysis
dc.titleNecessary optimality conditions for minimax optimal control problems with mixed constraints
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución