dc.contributorUniversidade Estadual Paulista (UNESP)
dc.contributorUniversidade Tecnológica Federal Do Paraná (UTFPR)
dc.date.accessioned2022-04-29T08:29:09Z
dc.date.accessioned2022-12-20T02:44:43Z
dc.date.available2022-04-29T08:29:09Z
dc.date.available2022-12-20T02:44:43Z
dc.date.created2022-04-29T08:29:09Z
dc.date.issued2020-01-01
dc.identifierNonlinear Dynamics of Structures, Systems and Devices - Proceedings of the 1st International Nonlinear Dynamics Conference, NODYCON 2019, p. 157-165.
dc.identifierhttp://hdl.handle.net/11449/228898
dc.identifier10.1007/978-3-030-34713-0_16
dc.identifier2-s2.0-85100225715
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5409032
dc.description.abstractFrom the normal form of polynomial differential systems in R3 having a sphere as invariant algebraic surface, we obtain a class of quadratic systems depending on ten real parameters, which encompasses the well-known Sprott A system. For this reason, we call them generalized Sprott A systems. In this paper, we study the dynamics and bifurcations of these systems as the parameters are varied. We prove that, for certain parameter values, the z-axis is a line of equilibria, the origin is a non-isolated zero-Hopf equilibrium point, and the phase space is foliated by concentric invariant spheres. By using the averaging theory we prove that a small linearly stable periodic orbit bifurcates from the zero-Hopf equilibrium point at the origin. Finally, we numerically show the existence of nested invariant tori around the bifurcating periodic orbit.
dc.languageeng
dc.relationNonlinear Dynamics of Structures, Systems and Devices - Proceedings of the 1st International Nonlinear Dynamics Conference, NODYCON 2019
dc.sourceScopus
dc.subjectInvariant sphere
dc.subjectInvariant torus
dc.subjectLinearly stable periodic orbit
dc.subjectSprott A system
dc.subjectZero-Hopf bifurcation
dc.titleThe Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución