dc.contributorCollege Station
dc.contributorUniversidade Federal do ABC (UFABC)
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T08:29:05Z
dc.date.accessioned2022-12-20T02:44:26Z
dc.date.available2022-04-29T08:29:05Z
dc.date.available2022-12-20T02:44:26Z
dc.date.created2022-04-29T08:29:05Z
dc.date.issued2020-01-01
dc.identifierProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, v. 476, n. 2243, 2020.
dc.identifier1471-2946
dc.identifier1364-5021
dc.identifierhttp://hdl.handle.net/11449/228877
dc.identifier10.1098/rspa.2020.0656
dc.identifier2-s2.0-85097953445
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5409011
dc.description.abstractClassical field theory is about fields and how they behave in space-time. Quantum field theory, in practice, usually seems to be about particles and how they scatter. Nevertheless, classical fields must emerge from quantum field theory in appropriate limits, and Michael Duff showed how this happens for the Schwarzschild solution in perturbative quantum gravity. In a series of papers, we and others have shown how classical radiation from an accelerated charge emerges from quantum field theory when the Unruh thermal effect is taken into account. Here, we sharpen those conclusions by showing that, even at finite times, the quantum picture is meaningful and is in close agreement with the classical picture.
dc.languageeng
dc.relationProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
dc.sourceScopus
dc.subjectacceleration
dc.subjectbremsstrahlung
dc.subjecthorizon
dc.subjectRindler space
dc.subjectUnruh effect
dc.titleThe relation between quantum and classical field theory with a classical source: Field theory with a classical source
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución