dc.contributorUzbek Academy of Sciences
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T08:26:51Z
dc.date.accessioned2022-12-20T02:39:03Z
dc.date.available2022-04-29T08:26:51Z
dc.date.available2022-12-20T02:39:03Z
dc.date.created2022-04-29T08:26:51Z
dc.date.issued2000-01-01
dc.identifierPhysical Review A - Atomic, Molecular, and Optical Physics, v. 62, n. 2, p. 9-, 2000.
dc.identifier1094-1622
dc.identifier1050-2947
dc.identifierhttp://hdl.handle.net/11449/228451
dc.identifier10.1103/PhysRevA.62.023613
dc.identifier2-s2.0-85037211772
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5408586
dc.description.abstractWe study the quantum coherent tunneling between two Bose-Einstein condensates separated through an oscillating trap potential. The cases of slow and rapid varying in the time trap potential are considered. In the case of a slowly varying trap, we study the nonlinear resonances and chaos in the oscillations of the relative atomic population. Using the Melnikov function approach, we find the conditions for chaotic macroscopic quantum-tunneling phenomena to exist. Criteria for the onset of chaos are also given. We find the values of frequency and modulation amplitude which lead to chaos on oscillations in the relative population, for any given damping and the nonlinear atomic interaction. In the case of a rapidly varying trap, we use the multiscale expansion method in the parameter [Formula Presented] where Ω is the frequency of modulations, and we derive the averaged system of equations for the modes. The analysis of this system shows that new macroscopic quantum self-trapping regions, in comparison with the constant trap case, exist. © 2000 The American Physical Society.
dc.languageeng
dc.relationPhysical Review A - Atomic, Molecular, and Optical Physics
dc.sourceScopus
dc.titleCoherent atomic oscillations and resonances between coupled Bose-Einstein condensates with time-dependent trapping potential
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución