Brasil | Actas de congresos
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.contributorSouthwest Paulista College
dc.date.accessioned2022-04-29T07:20:28Z
dc.date.accessioned2022-12-20T02:31:43Z
dc.date.available2022-04-29T07:20:28Z
dc.date.available2022-12-20T02:31:43Z
dc.date.created2022-04-29T07:20:28Z
dc.date.issued2014-01-01
dc.identifierVISAPP 2014 - Proceedings of the 9th International Conference on Computer Vision Theory and Applications, v. 2, p. 627-631.
dc.identifierhttp://hdl.handle.net/11449/227858
dc.identifier10.5220/0004740406270631
dc.identifier2-s2.0-84906919879
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5407993
dc.description.abstractSome pattern recognition techniques may present a high computational cost for learning samples' behaviour. The Optimum-Path Forest (OPF) classifier has been recently developed in order to overcome such drawbacks. Although it can achieve faster training steps when compared to some state-of-art techniques, OPF can be slower for testing in some situations. Therefore, we propose in this paper an implementation in graphics cards of the OPF classification, which showed to be more efficient than traditional OPF with similar accuracies. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.
dc.languageeng
dc.relationVISAPP 2014 - Proceedings of the 9th International Conference on Computer Vision Theory and Applications
dc.sourceScopus
dc.subjectGraphics Processing Unit
dc.subjectOptimum-Path Forest
dc.titleFast optimum-path forest classification on graphics processors
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución