dc.contributorFederal Techonological University of Paraná
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T07:11:53Z
dc.date.accessioned2022-12-20T02:23:30Z
dc.date.available2022-04-29T07:11:53Z
dc.date.available2022-12-20T02:23:30Z
dc.date.created2022-04-29T07:11:53Z
dc.date.issued2013-01-01
dc.identifierIFAC Proceedings Volumes (IFAC-PapersOnline), v. 46, n. 7, p. 245-250, 2013.
dc.identifier1474-6670
dc.identifierhttp://hdl.handle.net/11449/227192
dc.identifier10.3182/20130522-3-BR-4036.00077
dc.identifier2-s2.0-84881062284
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5407327
dc.description.abstractSeveral applications use robotic vision, such as a robot navigating through an unknown surrounding, can use vision as main navigate sensor. This paper focuses on studying camera calibration via stereo vision by means of neural network. A neurocalibration method is proposed based on the neural networks ability to learn nonlinear relationship among a two and three dimension coordinate systems and also its information generalization skill. The data used to train neural network mapping are generated from a calibration grid point obtained through the use of Harris edge detection algorithm. The experimental results indicated that the neurocalibration method is feasible and efficient. © 2013 IFAC.
dc.languageeng
dc.relationIFAC Proceedings Volumes (IFAC-PapersOnline)
dc.sourceScopus
dc.subjectCamera calibration
dc.subjectComputer vision
dc.subjectHarris corner extraction
dc.subjectNeural networks
dc.titleCamera calibration using detection and neural networks
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución