dc.contributorFederal University of Mato Grosso
dc.contributorFederal Institute of Mato Grosso
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.contributorPurdue University
dc.date.accessioned2022-04-28T21:02:11Z
dc.date.accessioned2022-12-20T02:08:16Z
dc.date.available2022-04-28T21:02:11Z
dc.date.available2022-12-20T02:08:16Z
dc.date.created2022-04-28T21:02:11Z
dc.date.issued2010-07-19
dc.identifierICT 2010: 2010 17th International Conference on Telecommunications, p. 552-558.
dc.identifierhttp://hdl.handle.net/11449/225968
dc.identifier10.1109/ICTEL.2010.5478852
dc.identifier2-s2.0-77954556689
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5406098
dc.description.abstractIntrusion detection datasets play a key role in fine tuning Intrusion Detection Systems (IDSs). Using such datasets one can distinguish between regular and anomalous behavior of a given node in the network. To build this dataset is not straightforward, though, as only the most significant features of the collected data for detecting the node's behavior should be considered. We propose in this paper a technique for selecting relevant features out of KDD99 using a hybrid approach toward an optimal subset of features. Unlike existing work that only detect attack or no attack conditions, our approach efficiently identifies which sort of attack each register in the dataset refers to. The evaluation results show that the optimized subset of features can improve performance of typical IDSs. © 2009 IEEE.
dc.languageeng
dc.relationICT 2010: 2010 17th International Conference on Telecommunications
dc.sourceScopus
dc.subjectHybrid approach
dc.subjectInformation gain ratio
dc.subjectK-means
dc.subjectKDD99. feature selection
dc.titleIdentifying important characteristics in the KDD99 intrusion detection dataset by feature selection using a hybrid approach
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución