dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T19:56:58Z
dc.date.accessioned2022-12-20T01:50:28Z
dc.date.available2022-04-28T19:56:58Z
dc.date.available2022-12-20T01:50:28Z
dc.date.created2022-04-28T19:56:58Z
dc.date.issued2005-01-01
dc.identifierHouston Journal of Mathematics, v. 31, n. 1, p. 87-102, 2005.
dc.identifier0362-1588
dc.identifierhttp://hdl.handle.net/11449/224509
dc.identifier2-s2.0-17244380104
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5404638
dc.description.abstractIn this work we make some contributions to the theory of actions of abelian p-groups on the n-Torus Tn. Set H ≅ ℤpk1 h1 × ℤpk2h2 × ⋯ × ℤpkrhr, r ≥ 1, k1 ≥ k2 ≥ ⋯ ≥ kr ≥ 1, p prime. Suppose that the group H acts freely on Tn and the induced representation on π 1(Tn) ≅ ℤn is faithful and has first Betti number b. We show that the numbers n, p, b, ki and h i (i = 1, ⋯ , r) satisfy some relation. In particular, when H ≅ ℤph, the minimum value of n is φ(p) + b when b ≥ 1. Also when H ≅ ℤpk1, × ℤp the minimum value of n is φ(pk1)+ p - 1 + 6 for 6 ≥ 1. Here φ denotes the Euler function. © 2005 University of Houston.
dc.languageeng
dc.relationHouston Journal of Mathematics
dc.sourceScopus
dc.subjectBieberbach groups
dc.subjectFree actions
dc.subjectIntegral representation
dc.subjectp-groups
dc.titleFree actions of abelian p-groups on the n-Torus
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución