dc.contributor | Universidade de São Paulo (USP) | |
dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.date.accessioned | 2022-04-28T19:56:58Z | |
dc.date.accessioned | 2022-12-20T01:50:28Z | |
dc.date.available | 2022-04-28T19:56:58Z | |
dc.date.available | 2022-12-20T01:50:28Z | |
dc.date.created | 2022-04-28T19:56:58Z | |
dc.date.issued | 2005-01-01 | |
dc.identifier | Houston Journal of Mathematics, v. 31, n. 1, p. 87-102, 2005. | |
dc.identifier | 0362-1588 | |
dc.identifier | http://hdl.handle.net/11449/224509 | |
dc.identifier | 2-s2.0-17244380104 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/5404638 | |
dc.description.abstract | In this work we make some contributions to the theory of actions of abelian p-groups on the n-Torus Tn. Set H ≅ ℤpk1 h1 × ℤpk2h2 × ⋯ × ℤpkrhr, r ≥ 1, k1 ≥ k2 ≥ ⋯ ≥ kr ≥ 1, p prime. Suppose that the group H acts freely on Tn and the induced representation on π 1(Tn) ≅ ℤn is faithful and has first Betti number b. We show that the numbers n, p, b, ki and h i (i = 1, ⋯ , r) satisfy some relation. In particular, when H ≅ ℤph, the minimum value of n is φ(p) + b when b ≥ 1. Also when H ≅ ℤpk1, × ℤp the minimum value of n is φ(pk1)+ p - 1 + 6 for 6 ≥ 1. Here φ denotes the Euler function. © 2005 University of Houston. | |
dc.language | eng | |
dc.relation | Houston Journal of Mathematics | |
dc.source | Scopus | |
dc.subject | Bieberbach groups | |
dc.subject | Free actions | |
dc.subject | Integral representation | |
dc.subject | p-groups | |
dc.title | Free actions of abelian p-groups on the n-Torus | |
dc.type | Artículos de revistas | |