dc.contributorUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T19:51:18Z
dc.date.accessioned2022-12-20T01:38:32Z
dc.date.available2022-04-28T19:51:18Z
dc.date.available2022-12-20T01:38:32Z
dc.date.created2022-04-28T19:51:18Z
dc.date.issued2022-08-15
dc.identifierJournal of Computational and Applied Mathematics, v. 410.
dc.identifier0377-0427
dc.identifierhttp://hdl.handle.net/11449/223536
dc.identifier10.1016/j.cam.2022.114168
dc.identifier2-s2.0-85125450285
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5403665
dc.description.abstractThe main objective in the present manuscript is to consider approximations of functions defined on the unit circle by Laurent polynomials derived from certain combinations of kernel polynomials of orthogonal polynomials on the unit circle. The method that we employ is based on a modification of the least squares method. The modification adopted here simplifies considerably the determinations of the coefficients in the combinations. Numerical examples show that this modified technique still leads to very good approximations.
dc.languageeng
dc.relationJournal of Computational and Applied Mathematics
dc.sourceScopus
dc.subjectKernel polynomials on the unit circle
dc.subjectLeast squares approximation
dc.subjectOrthogonal polynomials on the unit circle
dc.titleA modified least squares method: Approximations on the unit circle and on (−1,1)
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución