dc.contributorUniversidade Estadual Paulista (UNESP)
dc.contributorBrazilian Center for Research in Energy and Materials (CNPEM)
dc.contributorPhysics and Materials Science Research Unit
dc.contributorUniversidade Federal de Viçosa (UFV)
dc.contributorEindhoven University of Technology (TU/e)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2022-04-28T19:50:17Z
dc.date.accessioned2022-12-20T01:36:30Z
dc.date.available2022-04-28T19:50:17Z
dc.date.available2022-12-20T01:36:30Z
dc.date.created2022-04-28T19:50:17Z
dc.date.issued2022-04-16
dc.identifierNanotechnology, v. 33, n. 16, 2022.
dc.identifier1361-6528
dc.identifier0957-4484
dc.identifierhttp://hdl.handle.net/11449/223385
dc.identifier10.1088/1361-6528/ac47ce
dc.identifier2-s2.0-85123878559
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5403514
dc.description.abstractUnstrained GaAs quantum dots are promising candidates for quantum information devices due to their optical properties, but their electronic properties have remained relatively unexplored until now. In this work, we systematically investigate the electronic structure and natural charging of GaAs quantum dots at room temperature using Kelvin probe force microscopy (KPFM). We observe a clear electrical signal from these structures demonstrating a lower surface potential in the middle of the dot. We ascribe this to charge accumulation and confinement inside these structures. Our systematical investigation reveals that the change in surface potential is larger for a nominal dot filling of 2 nm and then starts to decrease for thicker GaAs layers. Using k • p calculation, we show that the confinement comes from the band bending due to the surface Fermi level pinning. We find a correlation between the calculated charge density and the KPFM signal indicating that k • p calculations could be used to estimate the KPFM signal for a given structure. Our results suggest that these self-assembled structures could be used to study physical phenomena connected to charged quantum dots like Coulomb blockade or Kondo effect.
dc.languageeng
dc.relationNanotechnology
dc.sourceScopus
dc.subjectelectrical characterization
dc.subjectKelvin probe force microscopy (KPFM)
dc.subjectmesoscopic GaAs structures
dc.subjectunstrained quantum dots
dc.titleImaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución