dc.contributorUniversity Austral of Chile
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.contributorBrazilian Center for Research in Energy and Materials
dc.date.accessioned2022-04-28T19:47:40Z
dc.date.accessioned2022-12-20T01:30:48Z
dc.date.available2022-04-28T19:47:40Z
dc.date.available2022-12-20T01:30:48Z
dc.date.created2022-04-28T19:47:40Z
dc.date.issued2022-02-01
dc.identifierComputational and Applied Mathematics, v. 41, n. 1, 2022.
dc.identifier1807-0302
dc.identifier2238-3603
dc.identifierhttp://hdl.handle.net/11449/222936
dc.identifier10.1007/s40314-021-01695-0
dc.identifier2-s2.0-85120044396
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5403065
dc.description.abstractIn this paper we deal with the fuzzy boundary value problem of the Bessel differential equation, whose boundary conditions are uncertain and given by linearly interactive fuzzy numbers. The Bessel differential equation can be considered in order to model wave and heat propagation problems. The fuzzy solution is obtained from the sup-J extension principle. We show that the sup-J extension provides proper fuzzy solution for the Bessel differential equation. In addition, we study the advantages of the proposed approach with others well known methods, such as the solutions based on the Zadeh extension principle and the solutions derived from the generalized Hukuhara derivative.
dc.languageeng
dc.relationComputational and Applied Mathematics
dc.sourceScopus
dc.subjectBessel differential equation
dc.subjectFuzzy boundary value problem
dc.subjectgH-differentiability
dc.subjectLinearly interactive fuzzy numbers
dc.subjectSup-J extension principle
dc.subjectZadeh extension principle
dc.titleSolution to the Bessel differential equation with interactive fuzzy boundary conditions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución