dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T19:44:46Z
dc.date.accessioned2022-12-20T01:24:32Z
dc.date.available2022-04-28T19:44:46Z
dc.date.available2022-12-20T01:24:32Z
dc.date.created2022-04-28T19:44:46Z
dc.date.issued2021-12-05
dc.identifierJournal of Differential Equations, v. 303, p. 123-155.
dc.identifier1090-2732
dc.identifier0022-0396
dc.identifierhttp://hdl.handle.net/11449/222452
dc.identifier10.1016/j.jde.2021.09.013
dc.identifier2-s2.0-85115232121
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5402582
dc.description.abstractThe aim of this paper is to obtain results on topological properties of flows for nonnegative time in the framework of generalized ODEs. We define the concept of generalized semiflow and we present some recursive properties as minimality and recurrence. Using correspondence theorems, we translate our results to measure differential equations which are known to be special cases of generalized ODEs. Some examples are presented to illustrate the theory.
dc.languageeng
dc.relationJournal of Differential Equations
dc.sourceScopus
dc.subjectGeneralized ODEs
dc.subjectGeneralized semiflows
dc.subjectMeasure differential equations
dc.subjectMinimality
dc.subjectRecurrency
dc.titleRecursive properties of generalized ordinary differential equations and applications
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución