dc.contributorUniversidade Estadual Paulista (UNESP)
dc.contributorUTFPR
dc.contributorUniversidade Estadual de Maringá (UEM)
dc.date.accessioned2022-04-28T19:42:32Z
dc.date.accessioned2022-12-20T01:20:22Z
dc.date.available2022-04-28T19:42:32Z
dc.date.available2022-12-20T01:20:22Z
dc.date.created2022-04-28T19:42:32Z
dc.date.issued2021-08-01
dc.identifierEntropy, v. 23, n. 8, 2021.
dc.identifier1099-4300
dc.identifierhttp://hdl.handle.net/11449/222115
dc.identifier10.3390/e23080959
dc.identifier2-s2.0-85111730367
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5402245
dc.description.abstractIn this work, we show that an n-dimensional sublattice Λ′ = mΛ of an n-dimensional lattice Λ induces a G = Znm tessellation in the flat torus Tβ′ = Rn/Λ′, where the group G is isomorphic to the lattice partition Λ/Λ′ . As a consequence, we obtain, via this technique, toric codes of parameters [[2m2, 2, m]], [[3m3, 3, m]] and [[6m4, 6, m2 ]] from the lattices Z2, Z3 and Z4, respectively. In particular, for n = 2, if Λ1 is either the lattice Z2 or a hexagonal lattice, through lattice partition, we obtain two equivalent ways to cover the fundamental cell P′0of each hexagonal sublattice Λ′ of hexagonal lattices Λ, using either the fundamental cell P0 or the Voronoi cell V0 . These partitions allow us to present new classes of toric codes with parameters [[3m2, 2, m]] and color codes with parameters [[18m2, 4, 4m]] in the flat torus from families of hexagonal lattices in R2 .
dc.languageeng
dc.relationEntropy
dc.sourceScopus
dc.subjectColor codes
dc.subjectFlat torus
dc.subjectLattice partition
dc.subjectSurface codes
dc.subjectToric codes
dc.titleTopological quantum codes from lattices partition on the n-dimensional flat tori
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución