dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.contributor | Universidade Estadual de Campinas (UNICAMP) | |
dc.date.accessioned | 2022-04-28T19:42:09Z | |
dc.date.accessioned | 2022-12-20T01:19:41Z | |
dc.date.available | 2022-04-28T19:42:09Z | |
dc.date.available | 2022-12-20T01:19:41Z | |
dc.date.created | 2022-04-28T19:42:09Z | |
dc.date.issued | 2021-10-25 | |
dc.identifier | Journal of Differential Equations, v. 299, p. 51-64. | |
dc.identifier | 1090-2732 | |
dc.identifier | 0022-0396 | |
dc.identifier | http://hdl.handle.net/11449/222061 | |
dc.identifier | 10.1016/j.jde.2021.07.021 | |
dc.identifier | 2-s2.0-85111297667 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/5402191 | |
dc.description.abstract | We prove the existence of a bounded variation solution for a quasilinear elliptic problem involving the mean curvature operator and a sublinear nonlinearity. We obtain such a solution as the limit of the solutions of another quasilinear elliptic problem involving a parameter p>1 as p→1+. The analysis requires estimates independent on p, as well as a precise version of the weak Euler-Lagrange equation satisfied by the solution. | |
dc.language | eng | |
dc.relation | Journal of Differential Equations | |
dc.source | Scopus | |
dc.subject | Existence of solution | |
dc.subject | Functions of bounded variation | |
dc.subject | Geometric measure theory | |
dc.subject | Mean curvature equation | |
dc.title | Existence of a BV solution for a mean curvature equation | |
dc.type | Artículos de revistas | |