dc.contributorUniversidade Estadual Paulista (UNESP)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2022-04-28T19:42:09Z
dc.date.accessioned2022-12-20T01:19:41Z
dc.date.available2022-04-28T19:42:09Z
dc.date.available2022-12-20T01:19:41Z
dc.date.created2022-04-28T19:42:09Z
dc.date.issued2021-10-25
dc.identifierJournal of Differential Equations, v. 299, p. 51-64.
dc.identifier1090-2732
dc.identifier0022-0396
dc.identifierhttp://hdl.handle.net/11449/222061
dc.identifier10.1016/j.jde.2021.07.021
dc.identifier2-s2.0-85111297667
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5402191
dc.description.abstractWe prove the existence of a bounded variation solution for a quasilinear elliptic problem involving the mean curvature operator and a sublinear nonlinearity. We obtain such a solution as the limit of the solutions of another quasilinear elliptic problem involving a parameter p>1 as p→1+. The analysis requires estimates independent on p, as well as a precise version of the weak Euler-Lagrange equation satisfied by the solution.
dc.languageeng
dc.relationJournal of Differential Equations
dc.sourceScopus
dc.subjectExistence of solution
dc.subjectFunctions of bounded variation
dc.subjectGeometric measure theory
dc.subjectMean curvature equation
dc.titleExistence of a BV solution for a mean curvature equation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución