dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T19:41:55Z
dc.date.accessioned2022-12-20T01:19:00Z
dc.date.available2022-04-28T19:41:55Z
dc.date.available2022-12-20T01:19:00Z
dc.date.created2022-04-28T19:41:55Z
dc.date.issued2021-06-01
dc.identifierProceedings - IEEE Symposium on Computer-Based Medical Systems, v. 2021-June, p. 277-282.
dc.identifier1063-7125
dc.identifierhttp://hdl.handle.net/11449/222009
dc.identifier10.1109/CBMS52027.2021.00077
dc.identifier2-s2.0-85110861789
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5402139
dc.description.abstractAutomated prognosis has been a topic of intense research. Many works have sought to learn from Electronic Health Records using Recurrent Neural Networks that, despite promising results, have been overcome by novel techniques. We introduce APEHR, a Transformer approach that leverages medical prognosis using the latest technology Neural Network Transformer, which has demonstrated superior results in problems whose data is organized in sequential fashion. We contribute with an innovative problem modeling along with a detailed discussion of how Transformers can be used in the medical domain. Our results demonstrate a prognostic performance that surpasses previous works by at least 6% for metric Recall@k in the public dataset MIMIC-III.
dc.languageeng
dc.relationProceedings - IEEE Symposium on Computer-Based Medical Systems
dc.sourceScopus
dc.subjectautomated clinical prediction
dc.subjectclinical trajectory
dc.subjectdeep learning
dc.subjecttransformer
dc.titleAPEHR: Automated prognosis in electronic health records using multi-head self-attention
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución