dc.contributorUniversidad del Pacífico
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.contributorMcMaster University
dc.date.accessioned2022-04-28T19:40:06Z
dc.date.accessioned2022-12-20T01:15:07Z
dc.date.available2022-04-28T19:40:06Z
dc.date.available2022-12-20T01:15:07Z
dc.date.created2022-04-28T19:40:06Z
dc.date.issued2021-10-01
dc.identifierMetrika, v. 84, n. 7, p. 1049-1080, 2021.
dc.identifier1435-926X
dc.identifier0026-1335
dc.identifierhttp://hdl.handle.net/11449/221725
dc.identifier10.1007/s00184-021-00815-4
dc.identifier2-s2.0-85104588706
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5401855
dc.description.abstractSkew-normal/independent distributions provide an attractive class of asymmetric heavy-tailed distributions to the usual symmetric normal distribution. We use this class of distributions here to derive a robust generalization of sinh-normal distributions (Rieck in Statistical analysis for the Birnbaum–Saunders fatigue life distribution, 1989), we then propose robust nonlinear regression models, generalizing the Birnbaum–Saunders regression models proposed by Rieck and Nedelman (Technometrics 33:51–60, 1991) that have been studied extensively. The proposed regression models have a nice hierarchical representation that facilitates easy implementation of an EM algorithm for the maximum likelihood estimation of model parameters and provide a robust alternative to estimation of parameters. Simulation studies as well as applications to a real dataset are presented to illustrate the usefulness of the proposed model as well as all the inferential methods developed here.
dc.languageeng
dc.relationMetrika
dc.sourceScopus
dc.subjectBirnbaum–Saunders distribution
dc.subjectEM algorithm
dc.subjectNonlinear regression models
dc.subjectRobust estimation
dc.subjectSinh-normal distribution
dc.subjectSkew-normal/independent distribution
dc.titleA robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución