dc.contributorUniversidade Estadual Paulista (UNESP)
dc.contributorUniversidade de São Paulo (USP)
dc.date.accessioned2022-04-28T18:59:08Z
dc.date.accessioned2022-12-20T00:54:07Z
dc.date.available2022-04-28T18:59:08Z
dc.date.available2022-12-20T00:54:07Z
dc.date.created2022-04-28T18:59:08Z
dc.date.issued2013-12-01
dc.identifierRevista Colombiana de Estadistica, v. 36, n. 2, p. 321-338, 2013.
dc.identifier0120-1751
dc.identifierhttp://hdl.handle.net/11449/220000
dc.identifier2-s2.0-84890880473
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5400129
dc.description.abstractIn this paper distinct prior distributions are derived in a Bayesian inference of the two-parameters Gamma distribution. Noniformative priors, such as Jeffreys, reference, MDIP, Tibshirani and an innovative prior based on the copula approach are investigated. We show that the maximal data information prior provides in an improper posterior density and that the different choices of the parameter of interest lead to different reference priors in this case. Based on the simulated data sets, the Bayesian estimates and credible intervals for the unknown parameters are computed and the performance of the prior distributions are evaluated. The Bayesian analysis is conducted using the Markov Chain Monte Carlo (MCMC) methods to generate samples from the posterior distributions under the above priors.
dc.languageeng
dc.languagespa
dc.relationRevista Colombiana de Estadistica
dc.sourceScopus
dc.subjectConjugate
dc.subjectCopula
dc.subjectGamma distribution
dc.subjectJeffreys prior
dc.subjectMCMC
dc.subjectMDIP
dc.subjectNoninformative prior
dc.subjectOrthogonal
dc.subjectReference
dc.titleInferencia bayesiana para la distribución gamma de dos parámetros asumiendo diferentes a prioris no informativas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución