dc.contributorFaculty of Technical Sciences
dc.contributorInstitute of Sound and Vibration Research
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T18:58:35Z
dc.date.accessioned2022-12-20T00:53:27Z
dc.date.available2022-04-28T18:58:35Z
dc.date.available2022-12-20T00:53:27Z
dc.date.created2022-04-28T18:58:35Z
dc.date.issued2011-03-03
dc.identifierThe Duffing Equation: Nonlinear Oscillators and their Behaviour, p. 277-322.
dc.identifierhttp://hdl.handle.net/11449/219947
dc.identifier10.1002/9780470977859.ch8
dc.identifier2-s2.0-84886061506
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5400076
dc.description.abstractTwo nonlinear asymmetric systems are described in this chapter. The first is a pure cubic nonlinear oscillator with a constant and a harmonic force acting on it, associated with a vibration isolator. The second is a hanging cable which the asymmetry is caused by gravity. Both of these systems have a single-well potential. The equations of motion can be written in such a way that they include a quadratic and cubic nonlinearity, and only a harmonic forcing term. Different analytical and numerical approaches are used to study and illustrate the rich dynamics of the systems. © 2011 John Wiley & Sons, Ltd. All rights reserved.
dc.languageeng
dc.relationThe Duffing Equation: Nonlinear Oscillators and their Behaviour
dc.sourceScopus
dc.subjectAsymmetry
dc.subjectChaos
dc.subjectHysteresis
dc.subjectPeriod-doubling bifurcation
dc.subjectSaddle-node bifurcation
dc.subjectSingle-well potential
dc.titleForced Harmonic Vibration of an Asymmetric Duffing Oscillator
dc.typeCapítulos de libros


Este ítem pertenece a la siguiente institución