dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.contributorUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2022-04-28T18:56:40Z
dc.date.accessioned2022-12-20T00:49:50Z
dc.date.available2022-04-28T18:56:40Z
dc.date.available2022-12-20T00:49:50Z
dc.date.created2022-04-28T18:56:40Z
dc.date.issued2010-11-01
dc.identifierJP Journal of Geometry and Topology, v. 10, n. 3, p. 251-261, 2010.
dc.identifier0972-415X
dc.identifierhttp://hdl.handle.net/11449/219632
dc.identifier2-s2.0-79951965187
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5399761
dc.description.abstractLet us consider M be a closed smooth connected m-manifold, N be a smooth n-manifold and f: M → N be a continuousmapwith codimension k = n - m > 0. In this paper, under certain conditions, we prove that f is homotopic to an immersion, in the following cases: m ≡ (14) and codimension k = m - 3; m ≡ 2(4), m ≡ 3(8) and codimension k = m - 5; m ≡ 2(4), m ≡ 3(8) and codimension k = m - 6. This work complements some results of Biasi et al. [1, 2], Koschorke [9] and of Li and Li [5]. © 2010 Pushpa Publishing House.
dc.languageeng
dc.relationJP Journal of Geometry and Topology
dc.sourceScopus
dc.subjectImmersion
dc.subjectObstruction
dc.subjectPaechter table
dc.titleOn codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución