dc.contributorUniversidade Federal de Mato Grosso do Sul (UFMS)
dc.contributorIFMS Fed Inst Educ Sci & Technol Mato Grosso do S
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T17:22:23Z
dc.date.accessioned2022-12-20T00:38:37Z
dc.date.available2022-04-28T17:22:23Z
dc.date.available2022-12-20T00:38:37Z
dc.date.created2022-04-28T17:22:23Z
dc.date.issued2020-01-01
dc.identifier2020 Ieee International Conference On Fuzzy Systems (fuzz-ieee). New York: Ieee, 8 p., 2020.
dc.identifier1098-7584
dc.identifierhttp://hdl.handle.net/11449/218671
dc.identifierWOS:000698733400038
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5398805
dc.description.abstractThis paper addresses the local stabilization problem and the computation of invariant subsets of the domain of attraction for uncertain nonlinear discrete-time systems. The proposed procedures use Takagi-Sugeno (T-S) fuzzy models that have uncertain membership functions and known local linear models. Based on a non-quadratic Lyapunov function, the proposed method uses a switched control law and the design conditions are given in terms of a optimization problem subject to Linear Matrix Inequalities (LMIs) constraints. The procedure provides a new and effective way to enlarge the estimation of the domain of attraction (DOA). Finally, a numerical example illustrates the effectiveness of the proposed method and compares it with procedures found in the literature.
dc.languageeng
dc.publisherIeee
dc.relation2020 Ieee International Conference On Fuzzy Systems (fuzz-ieee)
dc.sourceWeb of Science
dc.subjectSwitched control
dc.subjectDiscrete-time uncertain nonlinear system
dc.subjectTakagi-Sugeno (T-S) fuzzy model
dc.subjectUncertain membership functions
dc.subjectDomain of attraction (DOA)
dc.subjectLinear matrix inequality (LMI)
dc.titleSwitched Control for Local Stabilization of Discrete-time Uncertain Takagi-Sugeno Fuzzy Systems with Relaxed Estimate of the Domain of Attraction
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución