dc.contributorIVIRMA Global
dc.contributorIVI Fdn
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T18:22:04Z
dc.date.accessioned2022-12-19T23:05:31Z
dc.date.available2021-06-25T18:22:04Z
dc.date.available2022-12-19T23:05:31Z
dc.date.created2021-06-25T18:22:04Z
dc.date.issued2020-09-01
dc.identifierFertility And Sterility. New York: Elsevier Science Inc, v. 114, n. 3, p. E140-E141, 2020.
dc.identifier0015-0282
dc.identifierhttp://hdl.handle.net/11449/210500
dc.identifierWOS:000579355300348
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5391098
dc.languageeng
dc.publisherElsevier B.V.
dc.relationFertility And Sterility
dc.sourceWeb of Science
dc.titleNOVEL ARTIFICIAL INTELLIGENCE ALGORITHM FOR IMPROVING EMBRYO SELECTION COMBINING MORPHOKINETICS AND NON-INVASIVE MEASUREMENT OF OXIDATIVE STRESS.
dc.typeOtros


Este ítem pertenece a la siguiente institución