dc.contributorUniversidade Federal de São Carlos (UFSCar)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T12:30:44Z
dc.date.accessioned2022-12-19T22:57:28Z
dc.date.available2021-06-25T12:30:44Z
dc.date.available2022-12-19T22:57:28Z
dc.date.created2021-06-25T12:30:44Z
dc.date.issued2020-12-01
dc.identifierApplied Soft Computing. Amsterdam: Elsevier, v. 97, 12 p., 2020.
dc.identifier1568-4946
dc.identifierhttp://hdl.handle.net/11449/209831
dc.identifier10.1016/j.asoc.2019.105717
dc.identifierWOS:000603367700004
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5390428
dc.description.abstractDeep learning techniques, such as Deep Boltzmann Machines (DBMs), have received considerable attention over the past years due to the outstanding results concerning a variable range of domains. One of the main shortcomings of these techniques involves the choice of their hyperparameters, since they have a significant impact on the final results. This work addresses the issue of fine-tuning hyperparameters of Deep Boltzmann Machines using metaheuristic optimization techniques with different backgrounds, such as swarm intelligence, memoryand evolutionary-based approaches. Experiments conducted in three public datasets for binary image reconstruction showed that metaheuristic techniques can obtain reasonable results. (C) 2019 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationApplied Soft Computing
dc.sourceWeb of Science
dc.subjectDeep Boltzmann Machine
dc.subjectMeta-heuristic optimization
dc.subjectMachine learning
dc.titleA metaheuristic-driven approach to fine-tune Deep Boltzmann Machines
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución