dc.contributorUniv Lleida
dc.contributorUniv Autonoma Barcelona
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorCtr Recerca Matemat
dc.date.accessioned2021-06-25T12:30:34Z
dc.date.accessioned2022-12-19T22:57:25Z
dc.date.available2021-06-25T12:30:34Z
dc.date.available2022-12-19T22:57:25Z
dc.date.created2021-06-25T12:30:34Z
dc.date.issued2021-02-25
dc.identifierJournal Of Differential Equations. San Diego: Academic Press Inc Elsevier Science, v. 275, p. 309-331, 2021.
dc.identifier0022-0396
dc.identifierhttp://hdl.handle.net/11449/209826
dc.identifier10.1016/j.jde.2020.11.035
dc.identifierWOS:000602880100011
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5390423
dc.description.abstractIn this paper, we are interested in how the local cyclicity of a family of centers depends on the parameters. This fact was pointed out in [21], to prove that there exists a family of cubic centers, labeled by C D-31(12) in [25], with more local cyclicity than expected. In this family, there is a special center such that at least twelve limit cycles of small amplitude bifurcate from the origin when we perturb it in the cubic polynomial general class. The original proof has some crucial missing points in the arguments that we correct here. We take advantage of a better understanding of the bifurcation phenomenon in nongeneric cases to show two new cubic systems exhibiting 11 limit cycles and another exhibiting 12. Finally, using the same techniques, we study the local cyclicity of holomorphic quartic centers, proving that 21 limit cycles of small amplitude bifurcate from the origin, when we perturb in the class of quartic polynomial vector fields. (C) 2020 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationJournal Of Differential Equations
dc.sourceWeb of Science
dc.subjectSmall-amplitude limit cycle
dc.subjectPolynomial vector field
dc.subjectCenter cyclicity
dc.subjectLyapunov constants
dc.subjectHigher-order developments and parallelization
dc.titleLower bounds for the local cyclicity for families of centers
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución