Computation of nielsen and reidemeister coincidence numbers for multiple maps
| dc.contributor | Universidade Estadual Paulista (Unesp) | |
| dc.date.accessioned | 2021-06-25T11:12:23Z | |
| dc.date.accessioned | 2022-12-19T22:41:08Z | |
| dc.date.available | 2021-06-25T11:12:23Z | |
| dc.date.available | 2022-12-19T22:41:08Z | |
| dc.date.created | 2021-06-25T11:12:23Z | |
| dc.date.issued | 2020-01-01 | |
| dc.identifier | Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 483-499, 2020. | |
| dc.identifier | 1230-3429 | |
| dc.identifier | http://hdl.handle.net/11449/208453 | |
| dc.identifier | 10.12775/TMNA.2020.002 | |
| dc.identifier | 2-s2.0-85101597593 | |
| dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/5389050 | |
| dc.description.abstract | Let f1, …, fk: M → N be maps between closed manifolds, N(f1, …, fk ) and R(f1, …, fk ) be the Nielsen and the Reideimeister coincidence numbers, respectively. In this note, we relate R(f1, …, fk ) with R(f1, f2 ), …, R(f1, fk ). When N is a torus or a nilmanifold, we compute R(f1, …, fk ) which, in these cases, is equal to N(f1, …, fk ). | |
| dc.language | eng | |
| dc.relation | Topological Methods in Nonlinear Analysis | |
| dc.source | Scopus | |
| dc.subject | Nielsen coincidence number | |
| dc.subject | Nilmanifolds | |
| dc.subject | Topological coincidence theory | |
| dc.title | Computation of nielsen and reidemeister coincidence numbers for multiple maps | |
| dc.type | Artículos de revistas |