dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T11:12:23Z
dc.date.accessioned2022-12-19T22:41:08Z
dc.date.available2021-06-25T11:12:23Z
dc.date.available2022-12-19T22:41:08Z
dc.date.created2021-06-25T11:12:23Z
dc.date.issued2020-01-01
dc.identifierTopological Methods in Nonlinear Analysis, v. 56, n. 2, p. 483-499, 2020.
dc.identifier1230-3429
dc.identifierhttp://hdl.handle.net/11449/208453
dc.identifier10.12775/TMNA.2020.002
dc.identifier2-s2.0-85101597593
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5389050
dc.description.abstractLet f1, …, fk: M → N be maps between closed manifolds, N(f1, …, fk ) and R(f1, …, fk ) be the Nielsen and the Reideimeister coincidence numbers, respectively. In this note, we relate R(f1, …, fk ) with R(f1, f2 ), …, R(f1, fk ). When N is a torus or a nilmanifold, we compute R(f1, …, fk ) which, in these cases, is equal to N(f1, …, fk ).
dc.languageeng
dc.relationTopological Methods in Nonlinear Analysis
dc.sourceScopus
dc.subjectNielsen coincidence number
dc.subjectNilmanifolds
dc.subjectTopological coincidence theory
dc.titleComputation of nielsen and reidemeister coincidence numbers for multiple maps
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución