dc.contributorUniversidade Federal do Cariri - UFCA
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversitat de València
dc.date.accessioned2021-06-25T11:05:58Z
dc.date.accessioned2022-12-19T22:36:40Z
dc.date.available2021-06-25T11:05:58Z
dc.date.available2022-12-19T22:36:40Z
dc.date.created2021-06-25T11:05:58Z
dc.date.issued2020-01-01
dc.identifierJournal of Singularities, v. 22, p. 104-113.
dc.identifier1949-2006
dc.identifierhttp://hdl.handle.net/11449/208076
dc.identifier10.5427/jsing.2020.22g
dc.identifier2-s2.0-85094104939
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5388673
dc.description.abstractLet N be a smooth compact, connected and orientable 2-manifold with or without boundary. Given a stable circle-valued function γ: N → S1, we introduced a topological invariant associated to γ, called generalized Reeb graph. It is a generalized version of the classical and well known Reeb graph. The purpose of this paper is to investigate the number of loops in generalized Reeb graphs associated to stable circle-valued functions γ: N → S1. We show that the number of loops depends on the genus of N, the number of boundary components of N, and the number of open saddles of γ. In particular, we show a class of functions whose generalized Reeb graphs have the maximal number of loops.
dc.languageeng
dc.relationJournal of Singularities
dc.sourceScopus
dc.subjectGeneralized Reeb graphs
dc.subjectLoops
dc.subjectStable maps
dc.titleLoops in generalized reeb graphs associated to stable circle-valued functions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución