dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T10:53:23Z
dc.date.accessioned2022-12-19T22:27:48Z
dc.date.available2021-06-25T10:53:23Z
dc.date.available2022-12-19T22:27:48Z
dc.date.created2021-06-25T10:53:23Z
dc.date.issued2021-01-01
dc.identifierJournal of Algebra and its Applications.
dc.identifier0219-4988
dc.identifierhttp://hdl.handle.net/11449/207331
dc.identifier10.1142/S0219498822501031
dc.identifier2-s2.0-85101376657
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5387928
dc.description.abstractIn this work, we present the integral trace form TrM/Q(x2) of a cyclic extension M/Q with degree pq, where M = KL, p and q are distinct odd primes, the conductor of M is a square free integer, and x belongs to the ring of algebraic integers OM of M. The integral trace form of M/Q allows one to calculate the packing radius of lattices constructed via the canonical (or twisted) homomorphism of submodules of OM
dc.languageeng
dc.relationJournal of Algebra and its Applications
dc.sourceScopus
dc.subjectAlgebraic lattice
dc.subjectIntegral trace form
dc.subjectNumber field
dc.titleIntegral trace form of extensions of degree pq
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución