dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorIFSP-Federal Institute of Technology in São Paulo
dc.date.accessioned2021-06-25T10:50:56Z
dc.date.accessioned2022-12-19T22:26:28Z
dc.date.available2021-06-25T10:50:56Z
dc.date.available2022-12-19T22:26:28Z
dc.date.created2021-06-25T10:50:56Z
dc.date.issued2020-01-01
dc.identifierAlgebra and Discrete Mathematics, v. 30, n. 2, p. 179-193, 2020.
dc.identifier1726-3255
dc.identifierhttp://hdl.handle.net/11449/207219
dc.identifier10.12958/adm1246
dc.identifier2-s2.0-85100309460
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5387816
dc.description.abstractLet us consider W a G-set and M a Z2G-module, where G is a group. In this paper we investigate some properties of the cohomological the theory of splittings of groups. Namely, we give a proof of the invariant E(G,W,M), defined in [5] and present related results with independence of E(G,W,M) with respect to the set of G-orbit representatives in W and properties of the invariant E(G,W,FT G) establishing a relation with the end of pairs of groups ẽ(G,T), defined by Kropphller and Holler in [15]. The main results give necessary conditions for G to split over a subgroup T, in the cases where M = Z2(G/T) or M = FT G.
dc.languageeng
dc.relationAlgebra and Discrete Mathematics
dc.sourceScopus
dc.subjectCohomological invariants
dc.subjectCohomology of groups
dc.subjectSplittings and derivation of groups
dc.titleSome properties of e(G,w,ft g) and an application in the theory of splittings of groups
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución