dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorDalian University of Technology
dc.date.accessioned2021-06-25T10:48:28Z
dc.date.accessioned2022-12-19T22:24:39Z
dc.date.available2021-06-25T10:48:28Z
dc.date.available2022-12-19T22:24:39Z
dc.date.created2021-06-25T10:48:28Z
dc.date.issued2021-01-01
dc.identifierMeccanica, v. 56, n. 1, p. 169-177, 2021.
dc.identifier1572-9648
dc.identifier0025-6455
dc.identifierhttp://hdl.handle.net/11449/207067
dc.identifier10.1007/s11012-020-01265-4
dc.identifier2-s2.0-85098695738
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5387664
dc.description.abstractImpulse response functions (IRFs) and frequency response functions (FRFs) are fundamental quantities that describe the dynamic behaviour of a linear vibrating system in the time and frequency domains respectively. The acceleration IRF is of particular concern in this paper, because unlike the displacement and velocity IRFs it contains a Delta function as well as a decaying oscillation. The origin of this Delta function is shown to be due to the causality constraint rather than the system. To illustrate the characteristics of the IRFs and FRFs, simulations are presented for a single-degree-of-freedom system, and are supported by some laboratory experimental work. The acceleration IRF is partitioned into the impulse component (Delta function for the simulations) and the oscillatory component. They are separately transformed to the frequency domain to illustrate their effects in the accelerance FRFs for both simulated and measured data.
dc.languageeng
dc.relationMeccanica
dc.sourceScopus
dc.subjectElectrodynamic shaker
dc.subjectFourier transform
dc.subjectFrequency response functions
dc.subjectHeaviside function
dc.subjectImpulse response functions
dc.titleSome features of the acceleration impulse response function
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución