dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2021-06-25T10:44:53Z
dc.date.accessioned2022-12-19T22:22:05Z
dc.date.available2021-06-25T10:44:53Z
dc.date.available2022-12-19T22:22:05Z
dc.date.created2021-06-25T10:44:53Z
dc.date.issued2020-01-01
dc.identifierESAIM - Control, Optimisation and Calculus of Variations, v. 26.
dc.identifier1262-3377
dc.identifier1292-8119
dc.identifierhttp://hdl.handle.net/11449/206850
dc.identifier10.1051/cocv/2020011
dc.identifier2-s2.0-85096300158
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5387447
dc.description.abstractIn this paper we prove the compactness of the embeddings of the space of radially symmetric functions of BL(R N) into some Lebesgue spaces. In order to do so we prove a regularity result for solutions of the Poisson equation with measure data in R N, as well as a version of the Radial Lemma of Strauss to the space BL(R N). An application is presented involving a quasilinear elliptic problem of higher-order, where variational methods are used to find the solutions.
dc.languageeng
dc.relationESAIM - Control, Optimisation and Calculus of Variations
dc.sourceScopus
dc.subject1-biharmonic operator
dc.subjectBounded variation functions
dc.subjectCompactness with symmetry
dc.titleOn a quasilinear elliptic problem involving the 1-biharmonic operator and a Strauss type compactness result
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución