dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2021-06-25T10:30:57Z | |
dc.date.accessioned | 2022-12-19T22:16:18Z | |
dc.date.available | 2021-06-25T10:30:57Z | |
dc.date.available | 2022-12-19T22:16:18Z | |
dc.date.created | 2021-06-25T10:30:57Z | |
dc.date.issued | 2021-01-01 | |
dc.identifier | Open Mathematics, v. 19, n. 1, p. 87-100, 2021. | |
dc.identifier | 2391-5455 | |
dc.identifier | http://hdl.handle.net/11449/206373 | |
dc.identifier | 10.1515/math-2021-0010 | |
dc.identifier | 2-s2.0-85106314924 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/5386970 | |
dc.description.abstract | This paper deals with the fractional calculus of zeta functions. In particular, the study is focused on the Hurwitz ζ \zeta function. All the results are based on the complex generalization of the Grünwald-Letnikov fractional derivative. We state and prove the functional equation together with an integral representation by Bernoulli numbers. Moreover, we treat an application in terms of Shannon entropy. | |
dc.language | eng | |
dc.relation | Open Mathematics | |
dc.source | Scopus | |
dc.subject | Bernoulli numbers | |
dc.subject | fractional derivative | |
dc.subject | functional equation | |
dc.subject | Hurwitz ζ function | |
dc.subject | Shannon entropy | |
dc.title | Fractional calculus, zeta functions and Shannon entropy | |
dc.type | Artículos de revistas | |