dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T10:30:57Z
dc.date.accessioned2022-12-19T22:16:18Z
dc.date.available2021-06-25T10:30:57Z
dc.date.available2022-12-19T22:16:18Z
dc.date.created2021-06-25T10:30:57Z
dc.date.issued2021-01-01
dc.identifierOpen Mathematics, v. 19, n. 1, p. 87-100, 2021.
dc.identifier2391-5455
dc.identifierhttp://hdl.handle.net/11449/206373
dc.identifier10.1515/math-2021-0010
dc.identifier2-s2.0-85106314924
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5386970
dc.description.abstractThis paper deals with the fractional calculus of zeta functions. In particular, the study is focused on the Hurwitz ζ \zeta function. All the results are based on the complex generalization of the Grünwald-Letnikov fractional derivative. We state and prove the functional equation together with an integral representation by Bernoulli numbers. Moreover, we treat an application in terms of Shannon entropy.
dc.languageeng
dc.relationOpen Mathematics
dc.sourceScopus
dc.subjectBernoulli numbers
dc.subjectfractional derivative
dc.subjectfunctional equation
dc.subjectHurwitz ζ function
dc.subjectShannon entropy
dc.titleFractional calculus, zeta functions and Shannon entropy
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución