dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T10:27:26Z
dc.date.accessioned2022-12-19T22:13:37Z
dc.date.available2021-06-25T10:27:26Z
dc.date.available2022-12-19T22:13:37Z
dc.date.created2021-06-25T10:27:26Z
dc.date.issued2021-01-01
dc.identifierProgress in Biomedical Optics and Imaging - Proceedings of SPIE, v. 11595.
dc.identifier1605-7422
dc.identifierhttp://hdl.handle.net/11449/206153
dc.identifier10.1117/12.2582183
dc.identifier2-s2.0-85103693576
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5386750
dc.description.abstractThe Filtered Backprojection (FBP) algorithm for Computed Tomography (CT) reconstruction can be mapped entire in an Artificial Neural Network (ANN), with the backprojection (BP) operation simulated analytically in a layer and the Ram-Lak filter simulated as a convolutional layer. Thus, this work adapts the BP layer for Digital Breast Tomosynthesis (DBT) reconstruction, making possible the use of FBP simulated as an ANN to reconstruct DBT images. We showed that making the Ram-Lak layer trainable, the reconstructed image can be improved in terms of noise reduction. Finally, this study enables additional proposals of ANN with Deep Learning models for DBT reconstruction and denoising.
dc.languageeng
dc.relationProgress in Biomedical Optics and Imaging - Proceedings of SPIE
dc.sourceScopus
dc.subjectDeep learning
dc.subjectDigital breast tomosynthesis
dc.subjectNoise reduction
dc.subjectTomographic reconstruction
dc.titleImage reconstruction from projections of digital breast tomosynthesis using deep learning
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución