dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorInstitute for Big Data Analytics
dc.date.accessioned2021-06-25T10:26:15Z
dc.date.accessioned2022-12-19T22:12:47Z
dc.date.available2021-06-25T10:26:15Z
dc.date.available2022-12-19T22:12:47Z
dc.date.created2021-06-25T10:26:15Z
dc.date.issued2020-09-01
dc.identifierProceedings of the International Conference on Information Visualisation, v. 2020-September, p. 174-181.
dc.identifier1093-9547
dc.identifierhttp://hdl.handle.net/11449/206083
dc.identifier10.1109/IV51561.2020.00037
dc.identifier2-s2.0-85102927432
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5386680
dc.description.abstractMultidimensional projection techniques have been widely used to visually explore datasets due to their ability to generate representations that preserve similarity relations of data points into lower dimensional spaces. To evaluate if the embedded space reflects high-dimensional structures, measures are usually employed to return a quality score of the whole projection. In contrast to this idea, we evaluate the embedded layouts by assessing each class of the datasets at a time by using well-known quality measures. In addition, we propose assessing multidimensional projection techniques using ROC curves. Experimental results on two datasets show that our approach can be useful to discover how classes interact each other by using different visualization techniques and how close-related they are without thoroughly exploring the layouts. ROC curves proved to be a good measure for analyzing projection techniques and can give highly valuable feedback to users when exploring multidimensional data.
dc.languageeng
dc.relationProceedings of the International Conference on Information Visualisation
dc.sourceScopus
dc.subjectEvaluation
dc.subjectMultidimensional projections
dc.subjectVisualization
dc.titleA class-based evaluation approach to assess multidimensional projections
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución