dc.contributorGreat Dourados Federal University
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorAlfenas Federal University – UNIFAL.
dc.date.accessioned2021-06-25T10:20:08Z
dc.date.accessioned2022-12-19T22:08:19Z
dc.date.available2021-06-25T10:20:08Z
dc.date.available2022-12-19T22:08:19Z
dc.date.created2021-06-25T10:20:08Z
dc.date.issued2021-02-01
dc.identifierChaos, Solitons and Fractals, v. 143.
dc.identifier0960-0779
dc.identifierhttp://hdl.handle.net/11449/205718
dc.identifier10.1016/j.chaos.2020.110619
dc.identifier2-s2.0-85099236828
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5386315
dc.description.abstractThis paper describes the dynamics of hepatitis B by a fractional-order model in the Caputo sense. The basic results of the fractional hepatitis B model are presented. Two equilibrium point for the model exists, the disease-free point and the infected point. The local and global stability analysis of the system is given in terms of the basic reproductive number. We execute the global stability analysis using the extended Barbalat's lemma to the fractional-order system. The results show that the extension of Barbalat's Lemma is a robust tool for the asymptotic analysis of the fractional dynamic systems. Moreover, numerical simulations by Nonstandard Finite Difference Schemes show that the solutions converge to an equilibrium point as predicted in the stability analysis.
dc.languageeng
dc.relationChaos, Solitons and Fractals
dc.sourceScopus
dc.subjectBarbalat's lemma
dc.subjectFractional modeling
dc.subjectGlobal stability
dc.subjectHepatitis B
dc.subjectStability analysis
dc.titleGlobal stability analysis of a fractional differential system in hepatitis B
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución