dc.contributorFederal University of Ouro Preto - UFOP/EM/DEMEC
dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T10:14:31Z
dc.date.accessioned2022-12-19T22:04:23Z
dc.date.available2021-06-25T10:14:31Z
dc.date.available2022-12-19T22:04:23Z
dc.date.created2021-06-25T10:14:31Z
dc.date.issued2020-12-01
dc.identifierNonlinear Dynamics, v. 102, n. 4, p. 2859-2874, 2020.
dc.identifier1573-269X
dc.identifier0924-090X
dc.identifierhttp://hdl.handle.net/11449/205388
dc.identifier10.1007/s11071-020-06039-x
dc.identifier2-s2.0-85094154232
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5385986
dc.description.abstractThis work investigates the dynamics of the Chua circuit with cubic polynomial nonlinearity using methods for stability analysis based on linearization and frequency response. Root locus technique maps eigenvalues of the linearized system in order to analyze the local stability, which allows to verify dynamic features, motion patterns, and attractor topologies. The method based on describing functions allows analyze effects of the cubic nonlinearity in the system, as well as predict equilibrium and fixed points, periodic and chaotic orbits, limit cycles, multistability and hidden dynamics, unstable states, and bifurcations. The stability of the Chua circuit with cubic polynomial nonlinearity is analyzed using both approaches in order to identify and map dynamics in parameter spaces. Numerical investigations based on computational simulations corroborate the theoretical results obtained using this stability analysis. This theoretical analysis and the numerical investigations present interesting insights about the dynamics of the Chua circuit with cubic polynomial nonlinearity and provides a design tool for electro-electronic implementations.
dc.languageeng
dc.relationNonlinear Dynamics
dc.sourceScopus
dc.subjectChua circuit
dc.subjectCubic nonlinearity
dc.subjectDescribing functions
dc.subjectHidden oscillations
dc.subjectRoot locus
dc.subjectStability analysis
dc.titleStability analysis for the Chua circuit with cubic polynomial nonlinearity based on root locus technique and describing function method
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución