dc.contributorUniversidade Federal de São Carlos (UFSCar)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Maringá (UEM)
dc.date.accessioned2021-06-25T10:11:50Z
dc.date.accessioned2022-12-19T22:02:20Z
dc.date.available2021-06-25T10:11:50Z
dc.date.available2022-12-19T22:02:20Z
dc.date.created2021-06-25T10:11:50Z
dc.date.issued2020-01-01
dc.identifierBrazilian Journal of Probability and Statistics, v. 34, n. 4, p. 712-727, 2020.
dc.identifier0103-0752
dc.identifierhttp://hdl.handle.net/11449/205221
dc.identifier10.1214/19-BJPS453
dc.identifier2-s2.0-85091579258
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5385819
dc.description.abstractConducting sequencing experiments with good statistical properties and low cost is a crucial challenge for both researchers and practi-tioners. The main reason for this challenge is the combinatorial nature of the problem and the possible conflicts among objectives. The problem was addressed by proposing a mathematical programming formulation aimed at generating minimum-cost run orders with the best statistical properties for 2k full-factorial and fractional-factorial designs. The approach performance is evaluated using designs of up to 64 experiments with different levels of reso-lution. The results indicate that the approach can yield optimal or sub-optimal solutions, depending on the objectives established for a given design matrix.
dc.languageeng
dc.relationBrazilian Journal of Probability and Statistics
dc.sourceScopus
dc.subjectCombinatorial optimization
dc.subjectDesign of experiments
dc.subjectLinear time trend
dc.subjectMathematical pro-gramming
dc.subjectSystematic sequencing
dc.titleBi-objective mathematical model for optimal sequencing of two-level factorial designs
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución