dc.contributorInstituto de Tecnologías Físicas y de la Información
dc.contributorFederal University of Ouro Preto (UFOP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-12T02:45:33Z
dc.date.accessioned2022-12-19T21:22:27Z
dc.date.available2020-12-12T02:45:33Z
dc.date.available2022-12-19T21:22:27Z
dc.date.created2020-12-12T02:45:33Z
dc.date.issued2020-07-01
dc.identifierIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, v. 67, n. 7, p. 1438-1447, 2020.
dc.identifier1525-8955
dc.identifier0885-3010
dc.identifierhttp://hdl.handle.net/11449/201933
dc.identifier10.1109/TUFFC.2020.2972436
dc.identifier2-s2.0-85087435334
dc.identifier6405339510883203
dc.identifier2883440351895167
dc.identifier0000-0003-4201-5617
dc.identifier0000-0001-6320-755X
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5382567
dc.description.abstractUltrasonic phase velocity spectroscopy is a very sensitive technique used in the measurement of material properties. In a phase velocity calculation, ambiguities can arise in the spectral phases, in the form of integer multiples of 2π rad, which, if not corrected, results in large errors. In this work, we propose a method for determining these ambiguities, more specifically, the number of 2π rad phase jumps, using the Kramers-Kronig relations, for samples exhibiting a frequency power-law attenuation coefficient. The method is based on a first estimate of the phase velocity from group velocity and attenuation coefficient that are not affected by phase jumps. This estimated phase velocity is used to obtain the number of 2π rad phase jumps, which in turn is used to calculate the corrected phase velocity. The method was tested with samples of liquids with a frequency power-law attenuation coefficient (exponent y varying from 1.5 to 2) and a solid [polymethyl methacrylate (PMMA)] with y ∼ 1, and velocity dispersions ranging from 0 to 34 (cm/s)/MHz.
dc.languageeng
dc.relationIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
dc.sourceScopus
dc.subjectKramers-Kronig (K-K) relations
dc.subjectphase jumps
dc.subjectphase velocity
dc.titleDetermination of Phase Jumps in the Measurement of Phase Velocity of Samples Obeying a Frequency Power-Law Attenuation Coefficient Using Kramers-Kronig Relations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución