dc.contributorUniversidade Federal de São Carlos (UFSCar)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorOstbayerische Technische Hochschule
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2020-12-12T02:44:48Z
dc.date.accessioned2022-12-19T21:22:07Z
dc.date.available2020-12-12T02:44:48Z
dc.date.available2022-12-19T21:22:07Z
dc.date.created2020-12-12T02:44:48Z
dc.date.issued2020-08-01
dc.identifierJournal of Visual Communication and Image Representation, v. 71.
dc.identifier1095-9076
dc.identifier1047-3203
dc.identifierhttp://hdl.handle.net/11449/201903
dc.identifier10.1016/j.jvcir.2020.102823
dc.identifier2-s2.0-85086903747
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5382537
dc.description.abstractBag-of-Visual Words (BoVW) and deep learning techniques have been widely used in several domains, which include computer-assisted medical diagnoses. In this work, we are interested in developing tools for the automatic identification of Parkinson's disease using machine learning and the concept of BoVW. The proposed approach concerns a hierarchical-based learning technique to design visual dictionaries through the Deep Optimum-Path Forest classifier. The proposed method was evaluated in six datasets derived from data collected from individuals when performing handwriting exams. Experimental results showed the potential of the technique, with robust achievements.
dc.languageeng
dc.relationJournal of Visual Communication and Image Representation
dc.sourceScopus
dc.subjectHandwriting dynamics
dc.subjectHierarchical representation
dc.subjectOptimum-path forest
dc.subjectParkinson's disease
dc.titleHierarchical learning using deep optimum-path forest
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución