dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-12T02:42:57Z
dc.date.accessioned2022-12-19T21:21:14Z
dc.date.available2020-12-12T02:42:57Z
dc.date.available2022-12-19T21:21:14Z
dc.date.created2020-12-12T02:42:57Z
dc.date.issued2020-01-01
dc.identifierAdvances in Intelligent Systems and Computing, v. 1134, p. 241-247.
dc.identifier2194-5365
dc.identifier2194-5357
dc.identifierhttp://hdl.handle.net/11449/201829
dc.identifier10.1007/978-3-030-43020-7_32
dc.identifier2-s2.0-85085739419
dc.identifier8031012573259361
dc.identifier0000-0003-1248-528X
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5382463
dc.description.abstractIn this paper, we propose a hybrid visualization by combining a projection based approach with star plot visualization to inspect feature spaces. While the projection based visualization is used to depict the instances similarities from high-dimensional spaces onto a bi-dimensional space, the star plot visual metaphor enables inspection of features (attributes) relationship. By inspecting feature spaces, analysts can assess their quality and analyze which features contribute for the formation of clusters. To validate our proposal, we demonstrate how to improve feature spaces to generate more cohesive clusters, as well as how to analyze deep learning features of distinct Convolutional Neural Network (CNN) architectures.
dc.languageeng
dc.relationAdvances in Intelligent Systems and Computing
dc.sourceScopus
dc.subjectExplainability
dc.subjectExplainable artificial intelligence
dc.subjectFeature space
dc.subjectInterpretability
dc.subjectVisual analytics
dc.titleA Hybrid Visualization Approach to Perform Analysis of Feature Spaces
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución