dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Federal de Uberlândia (UFU)
dc.date.accessioned2020-12-12T02:39:15Z
dc.date.accessioned2022-12-19T21:19:33Z
dc.date.available2020-12-12T02:39:15Z
dc.date.available2022-12-19T21:19:33Z
dc.date.created2020-12-12T02:39:15Z
dc.date.issued2020-09-01
dc.identifierApplied Mathematics and Computation, v. 380.
dc.identifier0096-3003
dc.identifierhttp://hdl.handle.net/11449/201692
dc.identifier10.1016/j.amc.2020.125266
dc.identifier2-s2.0-85083462607
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5382326
dc.description.abstractEnergy bands and Wannier functions of the fractional Schrödinger equation with a periodic potential are calculated. The kinetic energy contains a Riesz derivative of order α, with 1 < α ≤ 2, and numerical results are obtained for the Kronig-Penney model. Bloch and Wannier functions show cusps in real space that become sharper as α decreases. Energy bands and Bloch functions are smooth in reciprocal space, except at the Γ point. Depending on symmetry, each Wannier function decays as a power-law with exponent −(α+1) or −(α+2). Closed forms of their asymptotic behaviors are given. Each higher band displays anomalous behavior as a function of potential strength. It first narrows, becoming almost flat, then widens, with its width tending to a constant. The position uncertainty of each Wannier function follows a similar trend.
dc.languageeng
dc.relationApplied Mathematics and Computation
dc.sourceScopus
dc.subjectasymptotic behavior
dc.subjectFractional Schrödinger equation
dc.subjectRiesz fractional derivative
dc.subjectSymmetry
dc.subjectWannier function
dc.titleEnergy bands and Wannier functions of the fractional Kronig-Penney model
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución