dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-12T02:32:59Z
dc.date.accessioned2022-12-19T21:16:42Z
dc.date.available2020-12-12T02:32:59Z
dc.date.available2022-12-19T21:16:42Z
dc.date.created2020-12-12T02:32:59Z
dc.date.issued2020-03-07
dc.identifierJournal of Theoretical Biology, v. 488.
dc.identifier1095-8541
dc.identifier0022-5193
dc.identifierhttp://hdl.handle.net/11449/201458
dc.identifier10.1016/j.jtbi.2019.110134
dc.identifier2-s2.0-85077657960
dc.identifier7977035910952141
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5382092
dc.description.abstractEscherichia coli ribosomal genes are a well-established experimental model used to investigate the transcription process. These genes are essential to cell physiology and are therefore strongly expressed. Multiple transcription units collaborate in rrn expression. Experiments involving electron microscopy have shown the non-uniform density of the RNA polymerases transcribing these ribosomal operons. Here, we investigate RNAP collaborative transcription in E. coli ribosomal genes using a stochastic sequence-dependent model that included interactions among the RNAPs. We achieved results consistent with experimental data using a model with variable parametrization for genic and intergenic regions, compared with previous attempts that used uniform parameters for genic and intergenic regions. Our model also showed that cooperative behaviour reduced the dwell times in pause sites predicted by the single-round approach but induced a new pausing event at an upstream position. This work may stimulate new experimental research and provide other scenarios to test our model predictions.
dc.languageeng
dc.relationJournal of Theoretical Biology
dc.sourceScopus
dc.subjectMolecular motors
dc.subjectRNAP
dc.subjectTranscription
dc.titleCooperative and sequence-dependent model for RNAP dynamics: Application to ribosomal gene transcription
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución